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EARTH MODEL SELECTION FOR COMPUTER SIMULATIONS

INTRODUCTION

The Effectiveness of Navy Electronic Warfare Systems (ENEWS) Program in the Tactical Electronic
Warfare Division (TEWD) of the Naval Research Laboratory (NRL) came into being in 1971 to provide the
electronic warfare (EW) community the analytical tools with which to perform EW system performance
assessments. To satisfy this need, ENEWS has generated a wide variety of computational tools, and, from
the beginning, has used digital computers to create simulated electromagnetic (EM) environments
(scenarios). These environments include motion for subsurface, surface, and airborne elements of tactical
engagements, and the necessary parameters for generating signal emissions. Until the early 1980s, these
tactical situations covered distances of not more than 100 to 200 nmi and were placed in open ocean and
midlatitudinal regions. A flat Earth model representation has served adequately for such scenarios.
However, over the last 6 to 10 years, mission requirements had to include Earth satellites, sea launched
ballistic missiles (SLBM), sea launched cruise missiles (SLCM), and hostile long-range bombers and
reccnnaissance aircraft. All these elements can operate over greater distances than 200 nmi as well as at
high latitudes and hence require the use of Earth models that remain accurate within tolerance over long
distances. This report provides a basis for selecting an appropriate Earth model that will allow for the
inclusion of the elements already mentioned and that can solve future problems.

The selection of an appropriate Earth model is one of the first tasks that analysts perform to construct
computer simulations requiring range and bearing computations. Frequently, a selection is made solely on
the basis of ease of implementation. This approach may yield adequate results under certain conditions and
error tolerances as indicated above in the ENEWS experience. However, as demonstrated in this report, the
selection of a particular Earth model may not necessarily yield the best approach. For example, the choice
of one Earth model applied at equatorial regions may not remain within the required error budget when it is
applied at midlatitudinal regions. In fact, to remain within certain accuracies, it may be required to use
several Earth models selectively depending upon location and distances within the same application
program. The prime intent of this analysis is to provide a method for selecting an appropriate Earth model
based on allowable range errors and CPU timing. The analysis summary provides a useful nomogram for
performing this function.

Specifically, this report is a study of three different categories of Earth models; fiat Earth, spherical
Earth, and ellipsoidal Earth. Within each category, two or more approaches are examined to determine
whether any significant differences exist within the category. CPU utilization analyses are performed and
included for completeness.

FLAT EARTH MODELS

A typical flat Earth model uses a transformation that is valid for small areas of coverage. Because of its
simplicity, it is computed very fast. This transformation assumes that the Earth is spherical with a
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PICH AND LEROY

circumference of 21,600 nni and that corresponds to a distance of 60 nmi/deg along any great circle. For
reference purposes throughout this report, the sphere is referred to as the Navigation Sphere. When site
locations are given as latitudes and longitudes, the positions are converted to a flat Earth approximation by
using these criteria. Details of this transformation are summarized here for ready reference.

The transformation from the Navigation Sphere to the flat Earth approximation is established by
taking two Points, 0 and A, on the surface of this sphere. These points are defined by geodetic coor-
dinates (0 1 , X1) and (02, X2) respectively, where 0i and X are the latitude and longitude respectively.
A mapping of the difference in latitude and longitude onto a flat plane is given by

Ay = 60 A0

Ax = 60 AX cos 02  (1)

where

A0 = 0 2 - 01

and where the measurement is made from point 0 (the observer) to Point A. By using this transfor-
mation, for point 0 on the plane (x 1, Y 1) and differences in latitude and longitude A0, AX, the termi-
nal point A (x2 , Y2) computes as follows:

Y2 = Y + Ay

X 2 = X I + AX (2)

where Ay and Ax are given by Eq. (1).

Figure 1 shows this transformation, where point 0 is the observation point and point A on the sphere is
mapped (by Eq. (2)) to point A' on the x, y plane. Figure 2 shows the associated bearing relationships. In
both figures the point of tangency is assumed to be at point 0. From the preceding formulas, the distance
OA' is calculated as shown in Eq. (3):

OA'= Ax 2 + Ay 2  (3)

A' 0 XY

Fig. I - Distance relationship of XY flat Earth
and reference ellipsoid

2
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A'

Fig. 2 - Bearing relationship of XY flat Earth
and reference ellipsoid

Equation (1) uses the cosine of the latitude 0 2 at Point A to modify the longitudinal difference,
AX. For minor latitude differences (small AO) with point 0 at or near the equator, this calculation
may be satisfactory. A more precise calculation can be obtained by taking the cosine of the mean
latitude. Thus, Ax in Eq. (1) becomes:

Ax = 60AXcos [01+ -2 (4)

This technique provides a negligible difference in computer run time when compared to the first
method, and it is considered to be more accurate. For reference, Eq. (1) will be called the End Point Flat
Earth model, and Eq. (4) and Ay from Eq. (1) will be called the Midpoint Flat Earth model.

SPHERICAL EARTH MODELS

To obtain the simplest progression from a flat Earth model, a spherical Earth model is used. In geodetic
computations, several spheres are commonly used

1. Mean-Axis Sphere radius = 6370291.091 m
2. Equal-Surface Sphere radius = 6370289.510 m
3. Equal-Volume Sphere radius = 6370283.158 m
4. Navigation Sphere radius = 6366707.019 m
5. Spherical Approximation radius = 6371000.000 m

The first three spheres are discussed in Ref. 1. As previously mentioned, the Navigation Sphere
corresponds to a sphere of 60 nmi/deg on any great circle. Finally, for the Earth's spherical radius a
rounded-off number of 6,371,000 m is sometimes used to solve geodetic problems. Throughout this report,
this sphere is referred to as the "Spherical Approximation."

3
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ELLIPSOID EARTH MODELS

The geometric representation of the Earth with geodetic accuracy is obtained by using a rotational
ellipsoidal model. This is possible because of the ever-improving ground and satellite sensors that provide
more accurate positional and gravitational data that, in turn, yield improved values of associated reference
ellipsoid constants. A rotational ellipsoid is defined by two constants, the semimajor axis a (Earth's radius at
the equator), and the semiminor axis b (Earth's radius at the poles). An alternative constant, mathematically
related to the axes [2), is called the flattening f given by

a -b
a

where

f is the flattening,
a is the semimajor (equatorial) axis, and
b is the semiminor (polar) axis.

The ellipsoid is normally specified by giving a and f; b is then readily calculated by solving for b in the
equation:

b = a(1 -).

For many Earth models, this flattening is approximately 1/300 [3].

Many ellipsoids have been developed and used for more than a century. Table 1 shows a partial list of
such ellipsoids, most of which were designed to be used for specific geographic locations. For the past few
decades, attempts have been focused on the development of a generalized ellipsoid model for the entire
Earth. The ellipsoid used as a reference for this report is the most recent one defined by the Defense
Mapping Agency (DMA); it is called the Department of Defense (DoD) World Geodetic System 1984, or
WGS-84. Table 1 shows the primary reference ellipsoid constants that define this ellipsoid. The ellipsoid
should provide surface distance measurement accuracies within a few meters anywhere on the Earth.
Current geodetic data generated by DMA, including digital terrain elevation data (DTED), are based on the
WGS-84 ellipsoid. Reference 2 provides details of the WGS-84 ellipsoid.

Appendixes A and B provide the program code for any ellipsoid defined by the semimajor and
semiminor axes. The "Inverse Solution" provides a distance and bearing calculation, given the latitudes
and longitudes of two end points. The "Direct Solution" calculates a second point, given the latitude and
longitude of an initial point, with the distance and bearing to the end point. The spherical computation is
available with either of these solutions, by selecting the semimajor and semiminor axes to be identical
(a = b).

ANALYSIS

Range and Bearing Errors

This analysis determines the limits over which each of the three basic Earth models (flat, spherical,
ellipsoidal) can be used. It is important to determine acceptable distance and positional accuracies for
simulations that require the use of an Earth model.

The approach uses a computer program that exercises the ellipsoid programs as listed in Appendixes A
and B, along with a flat Earth model. This program, computes polar plots of range errors and begins by

4
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Table I - Reference Ellipsoid Constants

Reference Semimajor Flattening
Elipsoid Year axis (in) f Used in/by

a

Airy 1830 6377563.396 1/299.3249646 Great Britain
Everest 1830 6377276.345 1/300.8017 India
Hough 1830 6378270 1/297 Wake-Eniwetok
Bessel 1841 6377397.155 1/299.1528128 Japan
Clarke 1866 6378206.4 1/294.9786982 North America
Clarke 1880 6378249.145 1/293.465 France, Africia
International 1924 6378388 1/297 Europe
Krassowsky 1940 6378245 1/298.3 Russia
WGS-60 1960 6378165 1/298.3
Fischer

(Mercury) 1960 6378166 1/298.3
WGS-66 1966 6378145 1/298.25 DoD Products
GRS 67 1967 6378160 1/298.25 Australia, South America
Fischer 1968 6378150 1/298.3 South Asia
WGS-72 1972 6378135 1/298.26 DoD Products
GRS 80 1979 6378137 1/298.257222101 North America
WGS-84 1985 6378137 1/298.257223563 DoD Products

generating a circle centered on an observation point with a predetermined range. The WGS-84 Direct
Solution calculates the latitudes and longitudes of points on that circle, in 1 steps. Then the flat Earth and
spherical Earth models are exercised with their associated inverse programs to calculate the distance
(range). The calculated ranges are then compared to the predetermined range to obtain a range error. The
range error assumes the WGS-84 ellipsoid as a reference. Bearing errors are also calculated by comparing
the calculated bearing with the input azimuth angle used to generate the data.

Flat Earth Models

The analysis compares the two flat Earth models described earlier. Polar plots of the range and bearing
errors have been generated for various ranges. The program steps in preparing the plots are as follows:

1. Select the range at which errors will be calculated.

2. Select the observer latitude and longitude.

3. Loop through 3600 in 10 steps.

4. Use the WGS-84 Direct Solution to determine the latitudes and longitudes of points on the range
circle in 1* increments.

5. Use the two flat Earth inverse functions to calculate new ranges and bearings, given the latitudes
and longitudes from steps 2 and 4.

6. Compare the newly calculated ranges with the selected range from step 1 for range errors.

7. Compare the newly calculated bearings with the azimuths defined in step 3 for bearing errors.

Figures 3 and 4 show the range and bearing errors incurred at 450 N 00 E for a distance of 100 nmi.
These and other figures are presented in detailed analyses in Appendix D. Figure 3 shows the improvement
gained by using the Midpoint Flat Earth model instead of the End Point Flat Earth model.

5
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Range 100 n.,

0.Observer Latitu~de 45 N

Observer Wnid (r E

o 0a 0a 04 02 0 2 04 06 08 10 nmi

End P-.L Flat Earth

180* Yi4dpoint '1st Earth -

Fig. 3 -Flat Earth range errors vs azimuth

R. 'g' '00 n-~

Observer Lo~ngitude 0' E

270* '0.
08 0 04 02 02 04 06 0 1 e

End Point Flat Earth(-
I ocv Widpolnt Flat Earth

Fig. 4 - Flat Earth bearing errors vs azimuth
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Spherical Earth Models

The next step is to select an appropriate spherical Earth model. The flat Earth programming steps
discussed earlier are used again. Spherical models are substituted in step 5; they are those used in the
ellipsoidal solutions of Appendixes A and B, with equal radius values for the semimajor and semiminor
axes. The five spheres already described are reduced to three spheres, because the first three in the list are,
for practical purposes, indistinguishable. Those chosen for further study are the Equal Volume, the
Spherical Approximation, and the Navigation Sphere.

Figure 5 shows a graph of the selected three spherical models at 500 nmi from the observation point
450 N 0 0E. At this latitude and distance the Spherical Approximation model is predominantly better than
either of the other two spherical Earth models. Appendix E furnishes additional comparisons at different
latitudes and ranges.

Range. 500 nau
Observer Latitude •45 N
Observer Longitude 0

° 
E

270
° 
0 90

°

- Spherical Approximation (-

180* Navigation Sphere (-
Squal Volume Sphere

Fig. 5 - Spherical Earth range errors vs azimuth

Comparison of Flat Earth and Spherical Earth Models

The analysis now determines the appropriate domains over which flat, spherical, and ellipsoidal Earth
models shouid be used. It is clear, from the preceding analysis, that depending on the application and
allowable error tolerances, sufficient choices of models exist that can be used. However, it is more difficult
to see when the adequacy of a model stops. This section of the report attempts to focus on this question solely
on the basis of range error analyses.

We reexamine the two flat Earth models previously discussed. By generating data as shown in Fig. 3,
but for a large number of radial ranges up to 500 nmi, we obtain the maximum range error incurred at each

7
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of the radial distances. Thus, Fig. 6 illustrates the error incurred by the End Point Flat Earth model. Similar
calculations are also performed by using the Midpoint Flat Earth and Spherical Approximation models and
are placed on the same graph shown in Fig. 6. Appendix F shows similar graphs computed at other
latitudes.

The analysis now proceeds to determine the error contours for the Midpoint Flat Earth model as a
function of latitude. By generating the same type of data as shown in Fig. 3, but taken at 10 increments of
observer latitude, it is possible to determine the range distances for a 1-nmi error, 2-nmi error, etc. This
produces the contours that are shown in Figs. 7 through 10. Figure 7 shows the End Point Flat Earth model
contours, and Fig. 8 shows the Midpoint Flat Earth model contours. Figures F l through F7 in Appendix F
compare the behavior of the End Point Flat Earth model to the Midpoint Flat Earth model at six selected
latitudes. Figures 7 and 8 provide the expansion of these data from the equator to the north polar region. The
1-nmi error contour shows the distance to which one can go to incur not more than a 1-nmi error at any
latitude north of the equator. Thus, for example, in Fig. 7, if an observer is at 40*N and if the distance
between the observer and a second point is less than or equal to 125 nmi, distances can be computed
accurately to within 1 nmi. Using the Midpoint Flat Earth model (Fig. 8) at the same latitude, the l-nmi
tolerance extends to approximately 360 nmi. A direct comparison of all the contours in Fig. 7 and 8 reveals
that the Midpoint Flat Earth model is superior to the End Point Flat Earth model in error tolerance at all
latitudes over all surface ranges. It is clear, thereford, that, since the computational requirements for these
two models are equivalent (Eqs. (1) and (4)), the Midpoint Flat Earth model is preferable.

Observer Latitude 450 N

25-

End Point

1 5 . .... .. ... .. . .. .. .. .... .......... .. . . ... !. ...... . .... .. . ...... .

t o - ... ... .: ... .. .. ....... . .. ..... .. . .

X

. .,

-Sphere

0 50 too 160 200 2;0 300 350 400 450 500

Distance from Observer (nmi)

Fig. 6 - Surface range errors vs surface range
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2000-

1750-

1500-

1250-

Co 1000-

nmi

Cl)
500

0 10 20 30 4'0 50 60 70 80 90

Latitude of Observer (Deg)

Fig. 7 - End Point Flat Earth range error contours vs observer latitude

2000-

1750-

1500-

2Z50-

eu 1000-

500

0 50-

2 nm,

0
0 10 20 30 40 50 60 7,0 830 9C

Latitude of Observer (Deg)

Fig. 8 - Midpoint Flat Earth range error contours vs observer latitude
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2000-

1750-

1500-
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M 1000-14 nmi

500-

400 3' ' 0 60 7 0 9

300-

X, 20100 rn

C). 20/160

1200 m

100 - 800 M

400 m

0 10 20 30 40 50 60 70 80 90

Latitude of Observer (Deg)

Fig. 10 - Spherical Avproximation range error contours vs observer latitude
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Having established the superiority of the Midpoint Flat Earth model, we now question in which regions
it is safe to use this model before using a spherical model such as the Spherical Approximation model.
Figure 9 shows the Spherical Approximation model contours. The 1-nmi error contour shows the distance
to which one can go to incur not more than a 1-nmi error at any latitude north of the equator. Thus, for
example, if an observer is at 15*N and if the distance between the observer and a second point is less than or
equal to 200 nmi, distances canbe computed accurately to within 1-nmi. A 2-nmi error is incurred at 15*N
at distances up to approximately 380 nmi, and so forth. The contours of Fig. 9 indicate that the Spherical
Approximation to the WGS-84 ellipsoid is best in the region from 380 N to about 420 N. Comparison of the
contours in Fig. 8 and those in Fig. 9 are now performed to determine the regions where switching from the
Midpoint Flat Earth model to Spherical Approximation model should take place. By comparing the 1-nmi
error contour on each figure, we can see that the I -nmi error contour in Fig. 9 begins to allow for greater
distance calculations at 360N and 375 nmi. Essentially, this is the crossover point where the Spherical
Approximation model yields an improved representation. Similar comparisons for the other four contours
yield the following approximate crossover points:

Surface Error Latitude Distance
(nmi) (ON) (nmi)

1 36 375
2 65 500
3 39 1050
4 35 1125
5 29 1250

Below 29 0 N latitude there appears to be a 0.5-nmi difference between the two models in favor of the
Midpoint Flat Earth model. Beyond that, the Spherical Approximation can maintain a better approximation
to the WGS-84 ellipsoid model.

Figure 8 should not be interpreted to mean that a flat Earth model is adequate over distances of 1000
rmi. In practice, however, most applications should hold the differences to under 1 nmi. This indicates that
a distance of 200 nmi is the practical extent over which calculations can be performed with such a
representation. Since the Spherical Approximation model yields approximately equivalent errors up to
about 80N (beyond which this model is superior to the Midpoint Flat Earth model), considerations to use
the Spherical Approximation at all latitudes for distances of less than 200 nmi are strong. This trade-off,
however, is performed based on timing considerations between the two approaches. Finally, Fig. 10 shows
a fine-grain analysis (under l-nmi error). A 1000-m error will not be exceeded by not exceeding distances
of 220 nmi (that is, approximately I part in 440). This then yields a practical limitation on the regions over
which the Midpoint Flat Earth model could safely be used below 80*N. Above 80*N no flat Earth
representation is adequate.

Comparison of Spherical Approximation Model and WGS-84 Ellipsoidal Model

By setting an appropriate error budget, plots as shown in Figs. 9 or 10 can be used to determine how far
in range we can use the Spherical Approximation model before we must use the WGS-84 ellipsoidal
calculations. For example, if an application program is used in the region between 50ON and 60ON with a
maximum error tolerance of 2 nmi, we can safely apply the Spherical Approximation model for calculating
distances up to 550 nmi. Beyond this distance, we should switch to the WGS-84 ellipsoidal calculations.
For 1-nmi error tolerances between 50ON and 60N the maximum range distance is about 270 nmi.

11
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In summary, many areas of interest lie in the region between 40ON and 70 0 N. Over this region the
Midpoint Flat Earth model yields acceptable results (errors less than 1000 m) at distances under 100 nmi.
From 100 nmi to approximately 250 nmi both the Midpoint Flat Earth and the Spherical Approximation
models yield similar results. For the distances beyond 250 nmi it is best to use WGS-84 calculations. For
example, at 50ON both models yield an error of t nmi at a distance of approximately 270 nmi. At a distance
of 1000 nmi the Midpoint Flat Earth model yields an error of approximately 6 nmi (Fig. 8) and the
Spherical Approximation model gives a 3-nmi error (Fig. 9) at 50ON latitude. Both results are generally
beyond acceptable limits.

Timing Considerations

Examination of the code of the Geodetic Inverse solution in Appendix A shows that an iterative loop is
used to perform the ellipsoidal calculation. Subsequent data in this report show that this loop is repeated only
if the semimajor and semiminor axes are not equal; for a sphere, only one pass is made through the loop.
When this routine is used for ellipsoids in production applications, this loop can potentially be time
consuming. A driver program was written to test the loop and the associated loop tolerance. The observer at
point 0 is placed at 00 longitude and 00 latitude. The driver program contains three loops to vary the
tolerance, the longitude of the target at point A, and the latitude of the target at point A. The longitude of
point A is changed in 1 steps from - 1791 to + 1800. The latitude of point A is varied from 00 to 900 in 10
steps. Since the convergence tolerance is directly related to CPU utilization, the loop tolerance is varied
from 10-1 to 10-12. The tolerance of 10-12 is the value used by DMA for applications that require high levels
of accuracy. It is used here as a reference to calculate maximum or worst case range measurement errors at
the other tolerances. All range- and bearing-error analyses presented earlier in this report use the 10-12

tolerance for the WGS-84 reference ellipsoid.

Table 2 gives a summary of the test results for the 32760 positional data points calculated. The A
distance errors vary approximately an order of magnitude as the tolerance varies an order of magnitude.

Table 2 - Maximum Errors from 10-12 Tolerance

A Distance A Bearing(nmi) (deg)

10-11 0.00000003 0.00000001
10-10 0.00000034 0.00000014
10-9  0.00000302 0.00000124
10-8 0.00003398 0.00001044
10- 7  0.00034435 0.00008813
10-6 0.00337846 0.00100208
10- 1 0.03439104 0.00628367
10-4  0.29504115 0.15386889
10- 3  3.42600647 1.30084743
10-2 34.26006474 11.30886079
10-1 36.07383288 180.00000000

Examination of the Geodetic Inverse code in Appendix A shows that an automatic limit of 100 loops is
set on each call to the routine. This limit was added as a precaution against cases that converge too slowly.
The number of loops actually observed in the testing gives an approximation of the CPU's utilization

12
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required. Table 3 shows a profile of the number of loops for each tolerance magnitude for nonspherical
calculations.

Table 3 can also be used to generate probability curves of convergence loop occurrences. From these
probabilities we can obtain the associated cumulative probabilities that the number of loops incurred is less
than a fixed number. Figure II shows a plot of these cumulative probabilities for four of the tolerances
tested. The probability of incurring three loops or less with a tolerance of 10-7 is approximately 0.85. That
is, 85 % of the time an ellipsoidal calculation is performed, it requires three or fewer loops at that tolerance.
However, to use the software as DMA requires for its purposes (that is, using a tolerance of 10-12), 85% of
the time requires the use of five loops or fewer. Hence it requires twice the amount of looping to improve the
results by a tolerance of 10-5.

Table 3 - Inverse Loop Count vs Tolerance Magnitude for WGS-84 Ellipsoid

Looped 10-01  10-02  10-03  10- 04  10-05  10-06  10-07  10-0  10-  10-i °  10-  10-12

I Time 32760 32760 32760 10674 593 539 539 539 539 539 539 539
2 Times 22086 23922 8520 2554 666 72 4 0 0
3 Times 8180 23260 27830 16700 8220 3960 1846 762
4 Times 54 396 1666 14292 22436 20958 12312 7516
5 Times 6 34 136 464 1228 6652 16712 21356
6 Times 2 6 22 66 192 482 9961 1888
7 Times 2 8 20 42 108 238 474
8 Times 2 6 16 30 66 134
9 Times 2 2 8 12 26 48
10 Times 2 2 6 10 18
11 Times 2 4 6 10
12 Times 2 2 2 6
13 Times 2 2
14 Times 2 2 2
15 Times 2
16 Times 2
17 Times
18 Times 2
21 Times
23 Times

101 Times 0 0 0 0 1 1 1 Ij I I I

A comparison of the data in Table 2 with the contour data in Fig. 9 indicates that using a convergence
tolerance of 10-4 for the WGS-84 ellipsoid is equivalent to using the Spherical Appro\imatlon tor surface
ranges under 250 nmi. Table 3 shows that the loop count for a tolerance of 10- is predominantly less than or
equal to 2. Hence for applications requiring a range error budget under I nmi, a tolerance of 10' in the
ellipsoidal model serves very well.

Data collection was performed to obtain WGS-84 reference ellipsoid timing % s the number of required
loops sampled at a loop convergence tolerance of 10-12. Table 4 summarizes the average CPU time on a
VAX 8650 for the Inverse and the Direct Solutions (per call to each) as a function of the number of loops
each algorithm takes. Only five sets of data were obtained for the Direct Solution. This is due to the low
probability of loop counts exceeding 5 for that routine (that is. higher loop counts could not be found).
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Table 4 - Sample Loop Count Timing for
WGS-84 Reference Ellipsoid Routines

Inverse Direct
(As) (As)

1 298 261
2 452 353
3 496 406
4 612 432
5 711 530
6 803 -
7 917 -
8 1008 -
9 1133 -

10 1244 -
11 1273 -
12 1368 -
13 1469 -
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An associated study of timing to achieve the number of computations discussed in the previous section
is now examined. 10 steps in the northern hemisphere are selected to exercise the geodetic subroutines,
including one that calculates the chordal distance (Appendix C), 32,760 times. For the other geodetic
routines, the observer is placed at seven latitudes, from 00 to 900 in 150 increments, generating 229,320
data points.

VAX 8650 CPU time is extracted for each subroutine call, and Table 5 shows the results. Because the
routines are exercised at a uniform distribution (10 steps) in the northern hemisphere, these numbers may be
considered good statistical averages.

Table 5 - CPU Time for Each
Geodetic Calculation

Geodetic Calculation Per Call
_(s)

DMA Chord Subroutine 294.4
End Point Flat Earth Direct 181.0
End Point Flat Earth Inverse 411.6
Midpoint Flat Earth Inverse 200.0
Midpoint Flat Earth Direct 184.0
Spherical Inverse Solution 420.5
Spherical Direct Solution 436.3

The DMA Chord subroutine requires the least amount of time, 294.4 its per call. It is noteworthy that
three inverse calculations, two for flat Earth and one for the spherical Earth, take approximately the same
amount of time. This shows that replacing a flat Earth model with a spherical Earth model has a minimal
impact on CPU time.

Table 6 presents the CPU requirements for the WGS-84 ellipsoid loop convergence tolerances ranging
from 10-12 through 10-1. The CPU utilization drops dramatically as the convergence tolerance is lessened.
Table 3 shows the reduction in convergence looping as a result of this tolerance reduction. Table 4 shows
the corresponding reduction in CPU time as a function of the number of loops. Thus we can readily predict
the resulting tendencies as shown in Table 6.

Using all of the aforementioned tables and figures, we can now perform an Earth model selection
process. As an example, the ENEWS Program generates digital computer representations of large scale EM
environments with ship, aircraft, and missile motion. These representations, referred to as scenarios,
currently extend over distances of up to 800 nmi. Ships, missiles, and aircraft are considered as mass points;
their dimensionality is considered only when radar cross section is calculated. An assumption of an error
budget of under 1 nmi (a distance of the order of magnitude of approximately six times the length of a Navy
carrier) leads to the requirement of using a convergence loop tolerance of 10-4 or less (Table 2) when using
the WGS-84 reference ellipsoid calculations. Since, in scenario motion computations, the Direct Geodetic
Solution is the one predominantly used, the discussion focuses only on values for this computation. Table 7
is extractkd from Tables 2, 5, and 6 and Fig. 9.
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Table 6 - CPU Time Per Call for
Each Convergence Tolerance for the

WGS-84 Reference Ellipsoid

Convergence Inverse Direct
Tolerance (As) (us)

10-12 747.2 697.9
10-11 693.8 633.7
10-10 662.0 627.1
10- °9  651.1 591.6
10- °4 610.0 574.9
10- 07  578.7 569.8
10- 06  551.3 523.2
10- 05 517.7 510.9
10- 04  495.8 506.1
I0 - 3 464.2 455.5
10- 02 405.0 424.6

10- 01 413.0 428.9

Table 7 - Timing and Error Considerations for Spherical
Approximation and Selected WGS-84 Loop Tolerances

CPU Time Maximum Distance Error
per call from WGS-84 Ellipsoid

(sS) (10- 12) at 800 nmi
(m) (nmi)

Spherical Approximation 436.3 7408 4.0
WGS-84 (10- 4 ) 506.1 546 0.295
WGS-84 (10-') 510.9 63 0.034

The incurred Spherical Approximation model distance error is taken over all latitudes. Restricting the
error to latitudes between 40*N and 70ON still yields an error of approximately 3 nmi at a surface range of
800 nmi. This range measurement error far exceeds the allotted error budget. Figure 9 shows that it is
impossible to achieve the desired error budget under I nmi at distances of 800 nmi. Thus, this narrows the
model selection choice to the use of the WGS-84 calculations with a 13.5 factor improvement in the
resultant error (0.295 nmi vs 4 nmi) at a cost of only 70 As more per subroutine call. The choice of a
tolerance of 10- 5 rather than l0 4 yields an improvement factor of approximately 118 times (0.034-nmi

error vs 4 nmi) at a cost of only 4 jus more per call than at the l0 -4 tolerance. It is clear that the most cost
effective choice of Earth model to use for the scenario application described above is the WGS-84 reference
ellipsoid model that uses a convergence loop tolerance of 10- 5. For scenarios covering smaller distances,
either a larger tolerance for the WGS-84 reference ellipsoid or the Spherical Approximation model may be

used. Thus, for example, for a 250-nmi coverage (see Fig. 9) a l-nmi error budget is achieved at a cost
reduction of 506.1 - 436.3 = 69.8 us per call (Table 7).
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Summary

To summarize the Earth model selection process in a general manner, a nomogram of the distance
coverage, error budget, and additional CPU timing costs is constructed for the latitudes 0" N through 700 N.
The latitudes are separated into two belts, the equatorial region (00 N to 400N) and the midlatitudes (400N
to 700N). This is accomplished by constructing Table 8 from the preceding tables and figures. Timing costs
shown in units of microseconds are CPU time in addition to the time required to compute the direct Midpoint
Flat Earth (MPFE) model calculation. The distances in the table are the maximum distance computed under
the constraint of the associated maximum error. For example, the Spherical Approximation (SA) model can
be used up to a distance of 250 nmi with a maximal error of 1 nmi in the midlatitude regions at a cost of
252 Ais above the time required for an MPFE direct calculation. Figure 12 is then constructed from the data
in Table 8. The nomogram is constructed for the purpose of serving as an Earth model selection tool. It
provides the means for determining possible distance coverages within specified range error budgets with
associated CPU utilization costs that are additional to those incurred by using the MPFE model. To gain an
understanding of how to use this nomogram, the reader must work through the inferences drawn from it in
the next paragraph.

From the nomogram, with the WGS-84 reference ellipsoid represented by all the shaded regions, we
can infer the following:

1. The SA model cannot be used to compute a distance of more than 250 nmi with a 1-nmi error
budget; nor can the MPFE model. Only the WGS-84 operating at a convergence tolerance of 10- 3

or less can be used.

2. The MPFE model actually outperforms the SA model (as previously discussed) in the equatorial
region. However, it is limited to a distance coverage of 720 nmi for error budgets under 3.42 nmi.
For an additional cost of 271 jus, this limitation is alleviated by the use of the WGS-84 model at
10- 3 convergence loop tolerance. Within an error budget of 0.295 nmi, a switch must be made to a
tolerance of 10-4 at a cost of an additional 51 As per subroutine call.

3. For distances greater than 500 nmi and error budget greater than 3.42 nmi, the SA model is
superior to the MPFE model at midlatitudes. However, the WGS-84 reference ellipsoid model
outperforms the SA model by 11 s per call with no distance limitation. Thus, for these error
budgets, the SA model is not cost effective in comparison to the WGS-84 model.

4. For budget tolerances under 0.295 nmi there is very little difference in coverage between the SA
model and the MPFE model, with an attendant maximum coverage of 75 nmi. The WGS-84
reference ellipsoid model operating at 10- convergence loop tolerance provides an unlimited
coverage at an additional CPU time cost of 322 As.

APPLICATION TO ENEWS SIMULATIONS

By necessity, ENEWS must be responsive in performing EW assessments because of more complex
and changing tecinologies. Such technologies include the use of satellite-, enhanced interferometry, as well
as improvements in EW systems due to the extensive integration of on board computers and
microprocessors as part of these systems. The Earth models must be chosen so that they serve as adequate
vehicles with which to conduct studies, the results of which fall within acceptable error-tolerance levels.
Clearly, the inclusion of dynamic Earth satellites precludes the use of any flat Earth models.
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Table 8 - Distance Coverages and Additional CPU Timing Costs

WGS-84 SA MPFE
Maximum Error Distance Timing Cost (Ls) Distance Coverage (nmi) Timing Cost Distance Coverage (mul) Timing Cost

Budget Coverage Loop Tolerances
(nmi) (nmi) 10

- 5  
10

- 4  
10

- 3  
10-2 0

0
N - 40ON 40*N - 70*N (As) 0°N - 40*N 40

0
N - 70ON (Os)

- 0.034 327

0.034 - 0.295 Coverage 322 50 75 52 60
0.295 - 1.0 Over 271 187 250 203 245
1.0 -2.0 Any 271 360 490 420 450
2.0 - 3.0 Distance 271 547 730 252 620 500 0
3.0 -3.42 in the 271 600 820 720 510
3.42 -4.0 Northern 241 705 970 812 525
4.0 - 5.0 Hemisphere 241 910 1200 1030 575
5.0 - 241

Loop
Tolerance io-4i (o

-
3) . (to

-
) 40 0 -7 ° 

N
(SA)

3212 271 ss241 "ss 0;-4O0 N

1000 (MPFE)
252 s

6 0 0 - _ /40 N
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Q-)> 400 .. N'
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T I i I
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Maximum Error Budget (nmi)

Fig. 12 - Distance coverage and additional CPU timing costs

The selection process of an Earth model for current and future applications within the ENEWS
Program rests between the use of a spherical Earth model, such as the Spherical Approximation model, or
an ellipsoid of revolution, such as the DoD standard World Geodetic System. Since the CPU timing
between the two methods is effectively equivalent, timing does not contribute to the decision process. The
remaining factors are accuracy and computer programming considerations.

First we address the question of accuracy and data sources. As this report shows, accuracies of at best
3.5 to 4 nmi can be achieved for distances at and beyond 800 nmi by using the Spherical Approximation
model. At the same distance, the WGS approach yields accuracies that are less than 0.3 nmi from the DoD
standard. This is a significant difference for applications that require the placement of surface to air missile
(SAM) sites and any other target elements. Generally, ENEWS receives site data from sources such as the
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Electronic Order of Battle (EOB) and the Air Order of Battle (AOB). These data are obtained primarily
from maps that use local datums (that is, local national surveys). If local surveys are not available, point
positions are drawn from the WGS system. Thus, these local datums are generally not consistent with each
other. For problems covering transoceanic or even intercontinental distances, this problem is very
apparent. The WGS standard provides the transformation to convert specific local coordinates into the
WGS system and vice versa [2]. However, the differences in point location between using local datums and
WGS-84 varies generally from 200 m to 1 or 2 nmi. Consequently, WGS-84 provides a consistent model
that covers large distances with site coordinate data and with known maximal variations from the actual
location. A spherical Earth model does not ensure this consistency over more than a single datum.

For the problems that involve ground based radars, local terrain elevation features play an essential
role in determining masking effects, that, in turn, affect the contributions to observable pulse densities in
EM environments. DMA provides Digital Terrain Elevation Data (DTED) for most land masses. These
data are referenced to the WGS-84 system. ENEWS has developed software to retrieve and process DTED
[41 and currently maintains a database covering regions of interest. Also, many vendor-supplied
mission-planning-graphics software tools use DTED for determining elevations and line of sight.
Attempting to use DTED for such analyses with spherical Earth models causes a misplacement of
geographic features by several miles. This would result in distortions of resultant pulse densities attributable
to many ground sites as viewed from long distances.

Finally, from the programming consideration viewpoint, it is important to achieve maximum
flexibility to be able to solve future problems while incurring minimum impact in programming
implementation. It is a fact that the Direct and Inverse Solution software implementation is identical for the
Spherical Approximation model as well as for the WGS-84 model. Since the Spherical Approximation
model, or for that matter any spherical Earth model, is valid only in a local sense (that is, over limited
number of contiguous datums), these do not offer the desired flexibility needed in future growth in solving
EW problems.

CONCLUSIONS

The following conclusions may be drawn from the previous analyses:

1. End Point Flat Earth models are inadequate representations of the Earth even over short ranges
(less than 100 nmi.) However, other flat Earth models such as the Midpoint Flat Earth model may
be adequate for many applications.

2. Flat Earth models should not be used to calculate distances greater than 100 nmi, especially north
of 40*N latitude if attempting to achieve less than 1000-m accuracies.

3. The Spherical Approximation model, on the average, yields an equivalent if not better
representation than the Midpoint Flat Earth model over most of the globe. This type of model can
serve adequately for distances up to approximately 250 nmi in the 40*N to 70 0 N regions while
incurring differences less than 1000 m with respect to the WGS-84 ellipsoid.

4. Beyond previously indicated ranges, the WGS-84 model should be used. Data indicate that four
convergence loops or fewer would be incurred approximately 95% of the time that Geodedic
Inverse Solutions are performed. On the average, one call for a Geodedic Inverse Solution
requires 0.5 ms on a VAX 8650. The Direct Solution requires, on the average, 0.363 ms.
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For the accuracies achieved, and, in view of the constant improvement in the CPU throughput of
new machines, the CPU utilization is a minimal and decreasing parameter in the Earth model
selection process. Tolerances can be "tightened" if necessary with the arrival of faster digital
computers.

5. For accuracy requirements under 1 nmi, the WGS-84 reference ellipsoid used with a
convergence loop tolerance of 10- 5 over all ranges on a hemisphere is the most cost effective
Earth model selection for ENEWS scenario applications.

RECOMMENDATIONS

As a result of the preceding analyses and conclusions, it is evident that the choice of an Earth model
based on allowable range errors is the prime factor in this decision-making process. Loss of accuracy in
geodetic computations negates the validity of any study being performed. If such studies are consistently
performed over ranges not exceeding 100 nmi, then any of the Earth models presented here is adequate.
However, satellite applications with appropriate motion cannot be included in any flat Earth model
approach. Hence, flat Earth models must be excluded from further considerations in solving problems that
will arise in the 1990s.

The WGS system is an Earth model that offers point positioning control on a global basis. Although
large differences may exist even between contiguous datums, such differences can be handled uniformly.
Spherical Earth models offer no resolution to this problem. Consequently, for all the reasons cited, it is
recommended that the ENEWS Program embark on enhancing its scenario environment generator by using
the DoD-wide standard WGS model to perform all required geodetic calculations.
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Appendix A
THE GEODETIC INVERSE SOLUTION SUBROUTINE

This appendix shows the Geodetic Inverse Solution subroutine used for the calculations done in this

report. The original code for this routine was obtained from the Defense Mapping Agency (DMA), for
which the authors are indebted.

Essentially, this routine has as input the latitudes and longitudes of the two points 0 and A on the
ellipsoid defined in Fig. 1 in the body of this report. It calculates the surface or arc length in meters, and the

0 to A and A to 0 bearings in seconds. Fixed constants are defined or generated externally to the routine and

passed into the routine in the "Ellipsoid" common block. These formulae are accomplished with double
precision accuracy on the computer. The ellipsoid definition for WGS-84 used with this Inverse Solution is

as follows:

A = 6378137
F = 1. / 298.257223563

B =(I-F)*A

The following constants are used in the inverse and related geodetic routines not shown here, and are

calculated once during initialization for optimum efficiency.

ASQR = A* A
BSQR = B * B
BSQOASQ = BSQR / ASQR
BOA = B / A
FF1 = 1 - BOA

F2 = (ASQR/BSQR)- 1
FF16 = FF1 / 16
RTS = 206264.806247

The code used for the Inverse Solution is shown in the following text. The "&" symbol represents a

line continuation. Inputs and outputs are currently given in seconds for angles and in meters for distances.
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SUBROUTINE INVERSE(OLATS,OLONS,OAAZ,ALATS,ALONS,AOAZ,ARC)

C SUBROUTINE INVERSE CALCULATES THE ARC LENGTH BETWEEN POINTS A
C AND THE OBSERVER AT POINT 0, THE BEARING FROM POINT A TO
C POINT 0, AND THE BEARING FROM THE OBSERVER TO POINT A.

C GEODETIC INVERSE COMPUTATION BY T. VINCENTY JAN 84

C INPUTS:
C A - SEMIMINOR AXIS IN METERS
C B - SEMIMINOR AXIS IN METERS
C OLATS - LATITUDE OF POINT 0 IN SECONDS
C OLONS - LONGITUDE OF POINT 0 IN SECONDS
C ALATS - LATITUDE OF POINT A IN SECONDS
C ALONS - LONGITUDE OF POINT A IN SECONDS

C OUTPUTS:
C ARC - SURFACE ARC LENGTH BETWEEN POINTS A-O IN METERS
C OAAZ - BEARING OF POINT A FROM POINT 0 IN SECONDS
C AOAZ - BEARING OF POINT 0 FROM POINT A IN SECONDS

IMPLICIT REAL*8(A-H,O-Z)
REAL*8 LAM, L, K

EQUIVALENCE (K,LAM)

COMMON /ELLIPSOID/ A, B, ASQR, BSQR, BSQOASQ, F, F2, FF1,
& FF16, BOA, RTS, DPI, TOLINV, TOLDIR,
& SPHERENAME, MAXSPHERES, NRSPHERE, NRSP,
& KLOOP

REAL*8 A, B, ASQR, BSQR, BSQOASQ, F, F2, FF1, FF16
REAL*8 RTS, DPI, TOLLOOP
INTEGER*4 MAXSPHERES, NRSPHERE, NRSP, KLOOP
CHARACTER*22 SPHERENAME

C A - SEMIMINOR EARTH AXIS (METERS)
C B - SEMIMINOR EARTH AXIS (METERS)
C ASQR - A SQUARED
C BSQR - B SQUARED
C BSQOASQ - CONSTANT = B SQUARED OVER A SQUARED
C FF1 - CONSTANT = 1 - F

C FF16 - CONSTANT = FF1 / 16
C F2 - CONSTANT = (A SQUARED / B SQUARED) - 1
C BOA - CONSTANT =B OVER A = B / A
C RTS - RADIANS TO SECONDS CONVERSION FACTOR
C TOLINV - INVERSE PROGRAM LOOP LIMIT TOLERANCE
C TOLDIR - DIRECT PROGRAM LOOP LIMIT TOLERANCE
C DPI - DOUBLE PRECISION PI
C SPHERENAME - THE NAME OF THE CURRENT SPHERE SELECTED
C MAXSPHERES - THE MAXIMUM NUMBER OF SPHERES ALLOWED
C NRSPHERE - NUMBER OF THE CURRENT SPHERE SELECTED
C NRSP - THE CURRENT NUMBER OF SPHERES DEFINED
C KLOOP - INVERSE LOOP COUNTER
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DATA TOLINV / 1.D-12/

IF ( ALATS .EQ. OLATS .AND. ALONS .EQ. OLONS )THEN
ARC = 0.D0
AOAZ = 0.DO
OAAZ = 0.DO
RETURN

ENDI F

UA =BOA * DSIN(OLATS/RTS) / DCOS(OLATS/RTS)
UB =BOA * DSIN(ALATS/RTS) / DCOS(ALATS/RTS)
COSUA =1.DO / DSQRT( UA**2.DO + 1.DO
SINUA =UA * COSUA
COSUB =1.D0 / DSQRT( UB**2.D0 + I.DO
L =(OLONS -ALONS) / RTS
LAM = L
S =COSUA *COSUB
BAZ S *UB
FAZ = BAZ *UA
KLOOP =0

280 CONTINUE

KLOOP =KLOOP + 1
IF ( KLOOP .GT. 100 )THEN
WRITE(14,*) ' LOOP LIMIT COSA =',COSA
WRITE(14,*) ' OLATD '.OLATS /3600.
WRITE(14,*) ' OLOND pOLONS /3600.
WRITE(14,*) ' ALATD ',ALATS /3600.
WRITE(14,*) ' ALOND ',ALONS /3600.
GOTO 400

END IF

SINLA = DSIN(LAM)
COSLA = DCOS(LAM)
UA = COSUB * SINLA
UB =-SINUA * COSUB *COSLA + BAZ
SINT =DSQRT( UA**2.DO + UB**2.DO
COST =S * COSLA + FAZ
TH =DATAN2(SINT,COST)
SINA =S * SINLA / SINT
COSA = SINA**2.D0 + 1.DO
IF ( COSA .EQ. 0.DO ) THEN

COSTM = COST
ELSE

COSTM = -2.DO * FAZ/COSA + COST
ENDIF

C = ( (-3.DO*COSA + 4.DO)* FF1 + 4.DO)* COSA* FF16
TEST = LAM
LAM = (((COSTM**2.DO * 2.DO-1.DO) *COST *C + COSTM)*

& SINT*C+TH) * SINA * FF1 *(1.DO -C) + L
IF ( DABS(TEST-LAM) .GT. TOLINV ) GOTO 280
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400 CONTINUE

C **** CALCULATE THE BEARING FROM POINT A TO THE OBSERVER

BAZ = DATAN2(-COSUA * SINLA, COSUB * SINUA - BAZ * COSLA
AOAZ = BAZ * RTS
IF ( AOAZ .LT. 0.DO ) AOAZ = AOAZ + 1.296D+06

C **** CALCULATE THE BEARING FROM THE OBSERVER TO POINT A

FAZ = DATAN2(UA,UB)
OAAZ = FAZ * RTS
IF ( OAAZ .LT. 0.DO ) OAAZ = OAAZ + 1.296D+06

K = F2 * COSA
C = (((K*(-175.D0)+320.D0)*K-768.D0)*K+4096.DO)

& * K/16384.DO+1.DO
D = (((K*( -47.D0)+ 74.D0)*K-128.D0)*K+ 256.DO)* K/ 1024.DO
S = ( ( ( COSTM**2.DO * 4.DO - 3.DO

& * ( SINT**2.DO * 4.DO - 3.DO
& * COSTM * (-D) / 6.DO
& + ( COSTM**2.DO * 2.DO - I.DO
& * COST) * D / 4.D0 + COSTM
& * SINT * (-D) + TH
ARC S * C * B
RETURN

END
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THE GEODETIC DIRECT SOLUTION SUBROUTINE

The Geodetic Direct Solution subroutine is shown in program form on the next two pages. The "&"
symbol represents line continuations. Inputs and outputs are given in seconds for angles and in meters for
distances. The Direct Solution subroutine calculates the latitude and longitude of an end point, given a
beginning point, and the bearing and distance to the end point. The many constants are defined during model
initialization as discussed in Appendix A. These constants are passed to the routine by means of the
ELLIPSOID.CDK common block that is shown in the listing.

The Direct Solution subroutine also contains an iterative loop like the Inverse routine. The Direct
Solution routine loop begins at statement label 10.
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SUBROUTINE DIRECT(ALAT,ALON,BLAT,BLON,FAZ,BAZ,S)

C GEODETIC POSITION COMPUTATION

C INPUTS:
C A - SEMIMINOR EARTH AXIS (IN COMMON)
C B - SEMIMINOR EARTH AXIS (IN COMMON)
C ALAT - POINT A LATITUDE

C ALON - POINT A LONGITUDE
C FAZ - FORWARD BEARING (POINT A TO B)
C S - SURFACE DISTANCE

C OUTPUTS
C BLAT - LATITUDE OF POINT B
C BLON - LONGITUDE OF POINT B
C BAZ - BACK BEARING ( POINT B TO POINT A)

IMPLICIT REAL*8(A-H,O-Z)
REAL*8 LAM, NUM

C ELLIPSOID COMMON BLOCK

COMMON /ELLIPSOID/ A, B, ASQR, BSQR, BSQOASQ, F, F2, FF1,
& FF16, BOA, RTS, DPI, TOLINV, TOLDIR,
& SPHERENAME, MAXSPHERES, NRSPHERE, NRSP,
& KLOOP

EQUIVALENCE (SINU,TANU), (AA,D), (BB,LAM), (FIRST,NUM)

DATA TOLDIR / 1.D-12 /

COSAZ = DCOS( FAZ / RTS
SINAZ = DSIN( FAZ / RTS
TANU = ( DSIN(ALAT/RTS ) / DCOS( ALAT/RTS) ) * BOA
THA = DATAN2(TANU,COSAZ)
COSU = I.DO / DSQRT(I.DO + TANU**2.DO
SINU = TANU * COSU
SINAL = COSU * SINAZ

COSSAL= I.DO - SINAL**2.DO
XK = F2 * COSSAL
AA = (((XK*(-175.DO) + 320.DO) * XK-768.DO) * XK+4096.DO)

& * XK / 16384.DO + I.DO
BB = (((XK*( -47.DO) + 74.DO) * XK-128.DO) * XK+ 256.DO)

& * XK / 1024.DO
FIRST = S / B / AA
TH = FIRST
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10 COSTHM= DCOS(2.DO * THA + TH)
SINTH = DSIN(TH)
COSTH = DCOS(TH)
TEST = TH
TH = (((COSTHM**2.DO * 4.DO-3.DO)

& *(SINTH**2.DO * 4.DO-3.DO)
& *COSTHM * (-BB) / 6.DO
& + (COSTHM**2.DO * 2.DO - 1.DO) * COSTH
& * BB / 4.DO + COSTHM.) * SINTH *BB + FIRST

IF ( DABS(TH-TEST) .GT. TOLDIR ) GOTO 10

TEST = SINU * SINTH - COSU * COSTH * COSAZ
NUM = SINU * COSTH + COSrJ * SINTH * COSAZ
DEN =BOA * DSQRT(SINAL**2.DO + TEST**2.DO)
BLAT = DATAN2(NUM,DEN) * RTS
LAM = DATAN2(SINTH*SINAZ,COSU*COSTH-SINU*SINTH*COSAZ)
D = ((-3.DO*COSSAL+4.DO)*FF1+4.D0) * COSSAL * FF16
-jON = (((COSTHM**2.DO * 2.DO-1.DO) * COSTH * D + COSTHM)

& *D*SINTH +TH)
& *SINAL * FF1 *(D - 1.DO )+ LAM

BLON = ALON -BLON * RTS
IF (BLON .GT. .648D06 )BLON = BLON - .1296D07
IF (BLON .LT.-.648D06 )BLON = BLON + .1296D07
BAZ = DATAN2(SINAL,TEST) *RTS

IF (BAZ .LT. 0.DO )BAZ =BAZ + .1296D07
RETURN

END
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Appendix C
CHORDAL DISTANCE CALCULATION SUBROUTINE

The Chordal Distance subroutine computes the chordal distance between two given points on the
Earth. The inputs are the latitudes and longitudes of these two points as well as their associated elevations.
As with the other geodetic routines, certain fixed constants are calculated during program initialization and
passed to the routine by means of the ELLIPSOID.CDK common block.
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SUBROUTINE CHORD(OLATR,OLONR,OELEV,ALATR,ALONR,AELEV,DCHORD)

C SUBROUTINE CHORD CALCULATES THE CHORDAL DISTANCE BETWEEN
C POINT 0 (THE OBSERVER) AND POINT A IN DOUBLE PRECISION METERS.

C INPUTS:
C OLATR - LATITUDE OF POINT 0 IN RADIANS
C OLONR - LONGITUDE OF POINT 0 IN RADIANS
C OELEV - ELEVATION OF POINT 0 IN METERS
C ALATR - LATITUDE OF POINT A IN RADIANS
C ALONR - LONGITUDE OF POINT A IN RADIANS
C AELEV - ELEVATION OF POINT A IN METERS

C OUTPUTS:

C DCHORD- CHORDAL DISTANCE IN METERS

IMPLICIT REAL*8(A-H,O-.Z)

C ELLIPSOID COMMON BLOCK

COMMON /ELLIPSOID/ A, B, ASQR, BSQR, BSQOASQ, F, F2, FF1,
& FF16, BOA, RTS, DPI, TOLINV, TOLDIR,
& SPHERENAME, MAXSPHERES, NRSPHERE, NRSP, ELOOP

OC=(ASQR)/DSQRT(ASQR*(DCOS(OLATR))**2.DO+BSQR*(DSIN(OLATR))**2.DO)

OX=(OC+OELEV) *DCOS(OLATR) *DCOS(OLONR) 1 OBS X-COORD
OY=(OC+OELEV)*DCOS(OLATR)*DSIN(OLONR) ! OBS Y-COORD
OZ-( ((BSQOASQ)*OC)+OELEV)*DSIN.(OLATR) ! OBS Z-COORD

AC=(ASQR)/DSQRT(ASQR*(DCOS(ALATR) )**2 .DO+BSQR*(DSIN(ALATR) )**2.DO)

AX-(AC+AELEV)*DCOS(ALATR)*DCOS(ALONR) ! POINT A X-COORD
AY=(AC+AELEV)*DCOS(ALATR)*DSIN(ALONR) ! POINT A Y-COORD
AZ-( ((BSQOASQ)*AC)+AELEV)*DSIN(ALATR) ! POINT A Z-COORD

DCHORD=DSQRT( (OX-AX)**2.DO + (OY-AY)**2.DO + (OZ-AZ)**2.DO

END
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Appendix D
FLAT EARTH MODEL ANALYSIS

Figures DI through D3 give the range error plots calculated for a fixed range of 100 nmi. In Fig. D1
the curves for the Midpoint and End Point Flat Earth models coincide when the observer is at the equator.
However, in Fig. D2 the End Point Flat Earth model calculation peaks at nearly double the equatorial error
when the observer is at 45ON latitude. The Midpoint Flat Earth model range errors are reduced in Fig. D2
as compared to those in Fig. D 1. At northern latitudes, as shown in Fig. D3, the errors are exorbitant for the
End Point Flat Earth model, but they have not changed much in peak value from the low-latitude plots for
the Midpoint Flat Earth model. They are approximately 0.5 nmi. From these plots, it is clear that the End
Point Flat Earth model range calculations increase in error with the increasing latitude away from the
equator.

We now analyze the corresponding bearing errors at the range of 100 nmi. When the observer is at the
equator, as in Fig. D4, the End Point Flat Earth model errors are only slightly greater than the midpoint
model errors. Figure D5, with the observer located at 45*N latitude, shows the bearing errors coinciding at
peaks of approximately 0.850 at the 900 and 2700 measurements. However, the Midpoint Flat Earth model
values exceed those for the End Point Flat Earth model measurements at most other angles. When the
observer is positioned at 75*N, as shown in Fig. D6, this effect is amplified further. Bearing errors near
900 are excessive.
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Appendix E
SPHERICAL EARTH MODEL ANALYSIS

Figure El shows a graph of the selected three spherical models at 500 nni. The peak error is 2.8 nmi
when using the Spherical Approximation. The Navigation Sphere has minimum error at the 00 and 1800
azimuths and has maximum error at the 900 and 2700 azimuths. The profile of the range errors shown in
Fig. E2 changes when the 500-nmi range is used at 450 N. The Spherical Approximation is predominantly
better, except at 1800 where the Navigation Sphere is better. In Fig. E3, the range-error curve is nearly
circular. The Equal Volume sphere has minimum error over the northern half of the circle, and the
Spherical Approximation has least error over the southern half. The Navigation Sphere is consistently worst
case. However, all spherical models are within 0.5 nmi in magnitude.

For completeness, errors incurred at longer distances must also be examined. We select a range of
5400 nmi. This represents a distance across a quarter of the Navigation Sphere. Figures E4 through E6
show three latitudes at this range. In Fig. E4, with the observer at the equator, the Spherical Approximation
model has the least error, peaking near 6 nmi; the worst error is exhibited by the Navigation Sphere that
peaks near 9 nmi. When the observer is moved to 45 0 N, Fig. E5 shows error peaks near 20 nmi, and the
Navigation Sphere is best to the south of the observer, whereas the Spherical Approximation model is best
north of the observer. When the observer is near the pole, at 75 0 N, as shown in Fig. E6, the errors are
comparatively less, peaking at 9 nni north of the observer and at 12 nmi south of the observer.

To examine the usefulness of the spherical models at even larger distances, similar calculations were
performed at a range of 10,000 nmi. Figure E7 indicates that the Navigation Sphere is worst, and the
Spherical Approximation model is best for range error measurement for ranges near 10,000 nmi with the
observer at the equator. When the observer is moved to 45 0 N latitude, as shown in Fig. E8, errors drop and
error profiles change. With the observer at 75 0 N, as in Fig. E9, the Spherical Approximation model is
consistently the worst of the three models, peaking at 9 nmi and the Navigation Sphere is optimum, peaking
at an error of only 3 nmi.

Figures ElO through E12 show bearing errors for observer latitudes of 0ON, 450 N, and 75 0N at a
range of 5400 nmi. Bearing errors for the purposes of comparing spherical models are not useful, since
these errors from all spheres tested coincide, as can be expected. However, absolute bearing values are of
interest. The peak bearing error (0.170) is found in Fig. El 1, at 45 0 N, whereas maximum errors near the
equator and pole are slightly under 0.1 *. In all these cases, bearing errors for most modeling applications
are insignificant. This observation is also true for a 10,000 ni range, as shown in Fig. E 13. The maximum
bearing error is 0.180.
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Appendix F
COMPARISON OF FLAT EARTH MODELS TO

SPHERICAL APPROXIMATION MODEL

Figure F1 shows the 0.5-nmi maximal error also shown in Fig. Dl at a range of 100 nmi with the
observer at the equator. Similar calculations are also performed by using the Spherical Approximation
model and placed on the same graph in Fig. Fl. For these close-in distances at the equator, the flat Earth
approximations tend to yield a slightly better approximation to the WGS-84 ellipsoid than does the
Spherical Approximation. For example, we can perform range calculations as far out as 200 nmi before
incurring a 1-nmi mile error with either flat Earth model whereas the Spherical Approximation would incur
this error at approximately 175 nmi. However, these results are only true at the equator. Figures F2 through
F7 provide similar plots at different latitudes on an equal maximum range error scale for ease of
comparison. From these plots it is clear that on the average (that is, over many latitudes) the Spherical
Approximation outperforms the flat Earth models. At 85*N the flat Earth models deteriorate rapidly.

To better understand the characteristics of the Spherical Approximation model at longer distances,
we performed tests at 00, 150, 300, 450, 600, 750 , and 900 north observer latitudes. Ranges from 10 to
5400 nmi were selected, and plots of the maximum error from each range vs distance from the observer
were drawn. Figures F8 through F14 show the resultant plots. When the observer is on the equator, as in
Fig. F8, the maximum error is 10.5 nmi, occurring at a range of 2900 nmi. The maximum error, 21 nmi, is
shown in Fig. F 11 with an observer latitude of 45*N. This point occurs at a range of 5400 nmi from the
observer. As the observer moves farther north in latitude (Figs. F12 through F14), the error decreases.
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